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1.1. OVERVIEW 1

1.1 Overview

Since NMR was first demonstrated in condensed matter in 1945, the technique has experienced tremen-

dous growth. NMR was commercialized in the 1960’s and by the end that decade NMR was routinely

used as a central tool by synthetic organic chemists. Compared to other spectroscopies NMR spectra are

embarrassingly easy to interpret and use as a tool for determining molecular structure. The frequency

of each line tells you not only what type of atomic nuclei are present but can also distinguish among

the same type of nuclei in different chemical bonding environments. Additionally, the intensity of each

signal is quantitative. What could be simpler? With increasing magnetic field strengths, the separation

between frequencies (in Hertz) increases, and thus, the ability to resolve overlapping peaks improves and

larger molecules can be studied. Higher magnetic field strengths also offer significant improvements in

sensitivity.

In the early years most NMR spectrometers were continuous-wave instruments. Today, practically

all NMR experiments are performed as pulsed time domain Fourier transform experiments. We will

examine the reasons for this situation later. It would be difficult and unnecessary to discuss all the

NMR experiments (pulse sequences) that have been developed and applied over the years. The aim of
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Figure 1.1: 1H-decoupled 13C NMR spectrum of Cholesterol. There are 26 resonances in this spectrum,

which when numbered from left to right, are assigned to the corresponding numbered carbon atom in

Cholesterol based on its resonance frequency.
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this text is to give you a basic understanding of the underlying theoretical and experimental aspects of

the technique. With this understanding you should be able to follow many articles in the NMR literature

and know how to implement most NMR experiments on a modern NMR spectrometer and analyze the

data.

In this chapter, we will present a simple classical model for understanding the NMR experiment,

intentionally avoiding the use of quantum mechanics so that a broader range of students can more

quickly understand many key concepts behind the technique. In later chapters, we will review the

necessary aspects of the quantum theory and connect them to the concepts described in this chapter.

P. J. Grandinetti, November 23, 2009



1.2. PRECESSING TOPS AND THE FARADAY DETECTOR 3

1.2 Precessing Tops and the Faraday Detector

Let’s start with the example of a macroscopic size spinning top in a gravitational field.

Z

g

X

Y

The top will precess about the direction of the gravitational field, with a characteristic frequency deter-

mined by parameters such as the mass, moments of inertia and the gravitational field strength, g. If we

eliminate g, that is, place the top in a zero gravity environment, it will stop precessing. If we then insert

a bar magnet inside our macroscopic top and placed it in a magnetic field, while still in a zero gravity

environment,
Z

B g = 0N

S

the “magnetic top” will precess about the direction of the magnetic field with a characteristic frequency

ω0 that is linearly proportional to the strength of the magnetic field B0. In NMR, ω0 is called the Larmor

frequency, and the time of one precession is called the Larmor period.

How might one measure the precession frequency for a magnetic top? One way is to exploit Faraday’s

Law. Recall that a changing magnetic field will induce a current in a surrounding loop of wire. Thus,

we place a coil of wire of radius rcoil around our spinning magnetic top.

Z

B

X

Y

N

S
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Faraday’s Law tells us that the Electromotive Force (EMF, i.e., voltage) induced in the coil will be

related to the change in magnetic flux with time.

E = −dΦ
dt

(1.1)

Here E is the EMF and Φ is the magnetic flux. In our example, the magnetic dipole vector of the top

will be changing with time according to

Z

X

Y

ψ

ξ

ω0 
t

µ

µ(t) = |µ| [sinψ cos(ω0t+ ξ0) ex + sinψ sin(ω0t+ ξ0) ey + cosψ ez] , (1.2)

where |µ| is the length of the precessing vector, ψ is the angle between the precessing vector and the

z-axis, ξ0 is the initial phase of the precessing vector, and ω0 is the precession frequency. With our

precessing magnetic dipole at the origin the EMF induced in the coil will be

Ex(t) = −dΦx(t)
dt

= ω0
µ0

2rcoil
|µ| sinψ sin(ω0t+ ξ0). (1.3)

From this signal we can measure the precession frequency. Let’s consider the factors that influence the

amplitude of this EMF signal. First, we see that the amplitude is directly proportional to the magnetic

dipole moment strength, |µ|. Next there is a scaling by sinψ, implying that the closer the magnetic

dipole precesses to the z-axis, the smaller the EMF signal. There is also a scaling by the inverse of the

coil radius, so that the EMF signal amplitude decreases with increasing coil radius. And finally, we note

that the EMF signal amplitude increases with increasing precession frequency. Thus, we see part of the

sensitivity advantage to having the highest possible static fields where the precession frequency will be

greatest.

1.2.1 The Zeeman Interaction

Now we make the connection to NMR. Every NMR active nucleus (i.e., its spin angular momentum

quantum number, I, is not zero) can be thought as a microscopic magnetic top. When you place an

P. J. Grandinetti, November 23, 2009



1.2. PRECESSING TOPS AND THE FARADAY DETECTOR 5

NMR active nucleus in a magnetic field, the coupling between its magnetic dipole vector and the magnetic

field will cause a precession about the magnetic field direction at a frequency, which to first order, is

determined by its gyromagnetic ratio and the external magnetic induction field, i.e.,

ω0 = −γB0.

This coupling is called the Zeeman interaction, and γ is the nuclear gyromagnetic ratio. Typical values

for γ for selected nuclei are given in Table 1.1.

P. J. Grandinetti, November 23, 2009
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Nucleus Spin Natural Abundance gyromagnetic ratio Quadrupole Moment Frequency at B0 = 2.35 Tesla

(Percent) γ (107 rad/T-s) Q (barns) ω0/2π (MHz)

1H 1/2 99.985 26.7519 - 100

2H 1 0.015 4.1066 2.8× 10−3 15.351

3H 1/2 - 28.5349779 - 106.663974

3He 1/2 0.000137 -20.3801587 - 76.179437

6Li 1 7.59 3.9371709 -0.808 14.716086

7Li 3/2 92.41 10.3977013 -40.1 38.863797

11B 3/2 80.42 8.5843 4.1× 10−2 32.089

13C 1/2 1.108 6.7283 - 25.145004

14N 1 99.634 1.9337792 0.02044 7.226329

15N 1/2 0.37 -2.712 - 10.136783

17O 5/2 0.037 -3.6279 −2.6× 10−2 13.561

19F 1/2 100 25.181 - 94.094003

23Na 3/2 100 7.08013 0.10 26.466

25Mg 5/2 10 -1.63887 0.1994 6.121642

27Al 5/2 100 6.9762715 0.1403 26.056888

29Si 1/2 4.70 -5.3188 - 19.867184

31P 1/2 100 10.8394 - 40.480737

35Cl 3/2 75.53 2.6240 −0.10 9.809

69Ga 3/2 60.108 6.438855 0.171 24.001253

71Ga 3/2 39.892 8.181171 0.107 30.496576

67Zn 5/2 4.1 1.676688 0.150 6.256819

87Rb 3/2 27.835 8.786400 0.132 27.835

107Ag 1/2 51.839 -1.0889181 - 4.047878

109Ag 1/2 48.161 -1.2518634 - 4.653601

235U 7/2 0.7200 -0.52 4.936 1.841000

Table 1.1: NMR Properties for selected nuclei obtained from www.webelements.com. 1 barn = 10−24

cm2.

P. J. Grandinetti, November 23, 2009
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1.3 The Chemical Shift Interaction

The slight variations in the resonance frequencies in Fig. 1.1 are caused by the nuclear shielding effect.

To account for this we write the precession frequency as

ω = −γ(1− σ)B0, (1.4)

where σ is called the isotropic nuclear shielding. This term arises from surrounding electrons that slightly

shield the nucleus from the full strength of the external magnetic field. σ is a dimensionless quantity

that is typically on the order of 10−6. Nuclear shieldings depends on a number of factors, and often

increases with increasing local electron density around a nucleus.

While an NMR spectrometer can measure the precession frequency with extremely high precision

and accuracy, a direct measurement of σ using Eq. (1.4) is problematic since it requires equally precise

and accurate measurements of B0, which is complicated by the need to take into account the sample’s

bulk magnetic suseptibiliy and shape. For this reason, it is more convenient to use the Chemical Shift,

which is defined in terms of the difference between NMR frequency of a given resonance and the NMR

frequency of a resonance in a reference compound, that is,

δsample =
ωsample − ωreference

ωreference
(1.5)

which defined in terms of the nuclear shielding is

δsample =
σreference − σsample

1− σreference
. (1.6)

Often chemical shifts are reported in units of parts per million, obtained by multiplying δ by 106. In

solution state NMR, an internal reference, that is, a compound homogeneously mixed into the sample,

is often used. This is preferred over external references, since it eliminates the need to correct for bulk

magnetic suseptibilities differences.

P. J. Grandinetti, November 23, 2009
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1.4 Magnetic Resonance, Coherence, and Relaxation

One of the main objectives in the NMR experiment is to measure the precession frequency of every

chemically distinct nucleus in the sample. To do this, we place a coil around a sample in a strong

magnetic field and measure the oscillating voltage induced in the coil by all the nuclear spins precessing.

There is just one complication with this approach. When you place a sample in a magnetic field, all

its nuclear magnetic dipole vectors will precess about the magnetic field direction, but there will be a

random distribution of angles from the z-axis, and angles in the x-y plane, in other words, a random

distribution of ψ and ξ. Imagine approximately 1020 nuclear magnetic dipole vectors pointing in random

directions in three dimensions and all of them precessing about the external magnetic field.

Z

X

Y

The vector sum of all the microscopic nuclear spin magnetic dipole vectors has a projection in the x-y

plane of zero! Alas, there’s no signal to detect with our Faraday detector. Fortunately, there is a solution.

It turns out that after the sample comes to thermal equilibrium in the magnetic field, there are a few

more nuclear magnetic dipole vectors on the +z half of the sphere than the −z half of the sphere, or

if you change the sign of the gyromagnetic ratio, more vectors on the −z half than the +z half. Thus,

there is a small non-zero vector sum pointing along the z-axis (i.e., along the magnetic field direction).

Here, we often say the spin system has Zeeman spin order. To a good approximation, the size of this

vector from Zeeman spin order is related to the strength of the magnetic field according to

Meq =
1
3
Nγ2~2I(I + 1)B0

kBT
,

where N is the total number of nuclei, I is the nuclear spin angular momentum, ~ is Planck’s constant,

kB is Boltzmann’s constant, and T is the temperature.

If the magnetization vector is along the z-axis it will give no signal. We need to find a way to

move this net magnetization vector into the x-y plane1. One simple experimental solution is Magnetic
1In principle, one approach to do this would be to hop the magnetic field direction away from the magnetization

suddenly. Then the net magnetization (still along the z-axis) would precess around the new magnetic field direction (now

P. J. Grandinetti, November 23, 2009
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Resonance, developed in the 1930’s by I. I. Rabi, and for which he received the Nobel Prize in Physics

in 1944. We start with the net magnetization vector lined up with the B0 vector.

Z

X

Y

B0 - magnetic field vector
net 

magnetization 

vector

Then, we apply a second magnetic field, B1, along the y-axis (which, in practice, is thousands of times

smaller than B0), so that the total external magnetic field vector now is ever so slightly tilted away from

the z-axis.

Z

X

Y

BeffB0

B1

The net magnetization vector will begin precessing about this new effective magnetic field direction.

After the magnetization has precessed 180◦ around the new effective magnetic field, we can switch the

small B1 to lie along the −y axis.

perpendicular to the z-axis) and would then be detectable by a coil in the x-y plane. In practice, however, this is too

difficult, since you would need to move the magnetic field direction much faster than one precession period, which in NMR

would mean less than a nanosecond.

P. J. Grandinetti, November 23, 2009
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Z

X

Y

Beff B0

B1

After switching the B1 field direction, the magnetization vector will precess along a wider cone about

the newer effective magnetic field direction. Once the net magnetization has processed 180◦ around

this effective magnetic field direction, we switch the B1 vector back along +y, and repeat the process.

Eventually, we can take the net magnetization vector from along +z and move it completely into the x-y

plane. All we needed to accomplish this, was to apply a small alternating magnetic field along the y-axis

that alternates with the same frequency that the net magnetization vector naturally precesses around

the magnetic field direction. This process is called magnetic resonance. It allows us to take the net

magnetization vector from along the z-axis and place it in the x-y plane2.

Z

X

Y

Z

X

Y
magnetic

resonance

Once the magnetization vector is completely in x-y plane, we can turn off the alternating B1 field and

the magnetization will precess in the x-y plane and induce an EMF signal in a coil. We can even use

2Clearly to do a magnetic resonance experiment you need to know the precession frequency. You may be thinking that

if you already knew the precession frequency why would you even bother doing the experiment? It turns out that you

don’t need to know the exact resonance frequency to do magnetic resonance. You can still move the magnetization vector

away from the z-axis if you’re slightly off resonance. Once there is a detectable magnetization component in the transverse

plane, however, you will be able to measure the frequency very accurately with your detector coil.

P. J. Grandinetti, November 23, 2009
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the same coil that we use to receive the signal to generate the alternating B1 magnetic field.

By taking the magnetization vector from the z axis to the x-y plane we have turned the Zeeman

order of the spin system into a “coherence”. The concept of coherence is central to understanding nearly

all NMR experiments, so it is worthwhile to examine this concept more carefully. In NMR, coherence

implies a correlated phase relationship among the orientations of many nuclear magnetic dipole vectors.

Defined in this way, coherence has no meaning for a single nuclear spin3 and is only a property of

many nuclear spins in an ensemble. Consider an analogy to the “Mexican Wave”4, a popular activity

at football stadiums around the world. Let’s say it takes one minute for the wave to travel around the

stadium. One spectator alone standing up and then down once a minute will not create an observable

wave. Likewise, all the spectators in the stadium standing up and down once a minute but each at

random times will also not create an observable wave. It is only when there is a certain correlation

between every spectator’s standing cycle will there be an observable wave. The Mexican Wave requires

“coherence” among many spectators to be observable.

In NMR there are relaxation processes that will destroy (randomize) the correlated phase relationship

among the precessing nuclear magnetic dipole vectors in the sample, causing the spins to lose coherence.

These relaxation processes, which randomize the phase relationships among the individual spin magnetic

dipole vectors, eventually lead to the net magnetization being completely along the z-axis again. Two

time constants often used to characterize these processes are:

T2: Spin-Spin (Transverse) Relaxation Time - Time scale that coherence is lost in the

x-y (transverse) plane.

T1: Spin-lattice (Longitudinal) Relaxation Time - Time scale that the equilibrium net

magnetization along the z (longitudinal) axis is restored.

So far, we’ve only considered the interaction of the nuclear magnetic dipole moment with the external

magnetic fields, such as the static B0, and the time dependent B1(t). Generally, a nucleus will experience

a variety of interactions between all its electric and magnetic moments and its atomic and molecular

surroundings (see section 1.8). NMR Relaxation arises from the time dependence of these interactions

due to random molecular motion. For simplicity, we’ll consider here just the interactions of an atom’s

nuclear magnetic dipole moment with the magnetic dipolar moments on neighboring atoms.
3Coherence can also defined as a correlated phase relationship for a single spin at different times. Do not confuse this

usage with the one above, where there’s a relationship among many spins at a given time.
4First became popular during the 1986 World Cup in Mexico. Spectators jump to their feet with arms outstretched -

and sit down again as neighbors in the stand rise up.

P. J. Grandinetti, November 23, 2009
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Imagine a nuclear magnetic moment vector precessing about the external B0 field on a cone of angle

ψ. As neighboring molecules, containing their own nuclear magnetic moments, tumble and translate,

they will generate a local oscillating magnetic field that can act on our nuclear magnetic moment vector

and change not only the angle ψ about which it is precessing, but also advance or retard ξ, the phase of its

precession. Although this process is happening to every nucleus in the sample, the phase and amplitude

of the local field fluctuations experienced vary from nucleus to nucleus. This is the mechanism that

destroys the phase coherence among the precessing nuclear spin magnetic moments and results in the

T2 decay of the transverse magnetization components, as well as the T1 recovery of the equilibrium

magnetization along the z axis. Note that T1 relaxation is affected only by local fields that change the

angle ψ, and not ξ, whereas T2 relaxation is affected by local fields that change either ψ or ξ.

A nice feature of this simple picture for NMR relaxation is that it qualitatively explains the depen-

dence of relaxation times on the time scale for molecular motion. When molecules are tumbling rapidly,

such that the molecular correlation time τ is much shorter than the Larmor period, then the local field

oscillation frequencies will be “off-resonant”, and their ability to move a nuclear spin’s magnetic moment

vector away from the angle ψ will be diminished. Likewise, if the molecular correlation time τ is much

longer than the Larmor period, the local field oscillations will again be “off-resonant” and less effective

in reorienting the nuclear magnetic moment vector. It’s only when the molecular correlation time is

close to the Larmor period that we will find the most efficient relaxation, that is, the shortest T1 value.

Thus, we observe a minimum in the T1 value as a function of molecular correlation time when ω0τ ≈ 1.

Log(τ)

P. J. Grandinetti, November 23, 2009
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compound nucleus Temperature Larmor Frequency T1 value or range

water 1H 20◦ C 29 MHz 2.3 seconds

ethanol 1H 20◦ C 29 MHz 2.2 seconds

glycerol 1H 20◦ C 29 MHz 23 milliseconds

glycerol 2D 20◦ C 9.2 MHz 2 seconds

chloroform-d 2D 25◦ C 9.2 MHz 1.35 seconds

0.5 M sucrose in H2O 13C 27◦ C 15.08 MHz 1-2 seconds

methyl-cyclohexane 13C 30◦ C 15.09 MHz 9-18 seconds

Table 1.2: Spin-lattice relaxation times, T1, for selected substances.

Because T2 relaxation is enhanced by any process that changes ξ, the phase of the spin precession it will

also be affected by variations in static local fields, which can slow down or speed up the precession of

the nuclear magnetic moment vectors. Such static local fields do not affect the precession angle ψ, only

its phase, ξ. Thus, while T1 relaxation is unaffected by static local fields, T2 relaxation will not increase

like T1 in the long molecular correlation time limit. Eventually, the molecular correlation time becomes

so slow that the sample becomes a rigid lattice, and then T2 remains relatively constant. Note that T1

will always be greater than or equal to T2.

P. J. Grandinetti, November 23, 2009
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1.5 The Bloch Equations

We can calculate the magnetization vector in the NMR experiment with a vector sum of the individual

nuclei’s magnetic dipole moments according to

M(t) =
N∑
j

µj(t). (1.7)

In 1946 Felix Bloch proposed a phenomenological set of equations to describe the precession and relax-

ation of the net magnetization vector in the NMR experiment. Given a magnetization vector,

M(t) = Mx(t)ex +My(t)ey +Mz(t)ez, (1.8)

it will evolve according to

dM(t)
dt

= ω(t)×M(t)− [R]
[
M(t)−Meq

]
, (1.9)

where

ω(t) = −γ(1− σ)B(t),

Meq = Meq ez and [R] =


1/T2 0 0

0 1/T2 0

0 0 1/T1

 .

In the Bloch equations the [R]
[
M(t)−Meq

]
term describes the relaxation decay of x-y “transverse”

magnetization and the growth of z “longitudinal” magnetization (similar to first-order chemical kinetics).

The ω(t) ×M(t) term describes the change in M(t) as it precesses about the B(t) direction. That is,

the magnetization vector, M(t), precesses about the instantaneous direction of the vector ω(t) with an

instantaneous precession frequency specified by the length of the vector ω(t).

The precession of the magnetization vector has so far been described with respect to a stationary ref-

erence frame associated with the lab. What if we stood on a turntable at the origin of our magnetization

vector, and the turntable was spinning at the same angular velocity as the magnetization vector?

P. J. Grandinetti, November 23, 2009
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Z

X

Y

-X

-Y

Then the lab frame would appear (to us) to be rotating in the opposite direction, and the magnetization

would appear stationary in this “rotating frame”. You can then imagine that the fast precessing and

relaxing magnetization vector in the lab frame would not be precessing at all if your rotating frame

exactly matched the precession frequency. That is, in the rotating frame the magnetization vector sum

would just move from y∗ to z∗, or if T1 � T2 the vector would shrink to zero along y∗ and then grow to

Meq along z∗.

Transforming the Bloch Equations into this frame we obtain

d∗M(t)
dt

= ωeff (t)×M(t)− [R]{M(t)−Meq}, (1.10)

where the magnetization vector, M(t), precesses in the rotating frame about a direction with a lower

precession frequency given by

ωeff (t) = ω(t)− ωrot. (1.11)

Here ωrot arises from going into the “rotating frame”. With Eq. (1.10), we can write the rate of change

for the magnetization vector components in the rotating frame. Let’s first start with the static magnetic

field applied alone, and then consider the static field and an oscillating magnetic resonance field.

1.5.1 Free Precession

In the presence of a static magnetic field alone the rotating frame precession frequency will be

Ω = ω0(1− σ)− ωrot, (1.12)

and the general solution for the magnetization in the rotating frame will be
M∗x(t)

M∗y (t)

M∗z (t)

 =


[
M∗x(0) cos Ωt−M∗y (0) sin Ωt

]
e−t/T2[

M∗y (0) cos Ωt+M∗x(0) sin Ωt
]
e−t/T2

M∗z (0)e−t/T1 +Meq(1− e−t/T1)

 , (1.13)
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where M∗x , M∗y , and M∗z are the magnetization vector components in the rotating frame.

When describing free precession it is often convenient to define the magnetization vector in NMR in

terms of spherical basis vectors, that is,

M(t) = M∗+1(t)e+1 +M∗0 (t)e0 +M∗−1(t)e−1,

where eq are defined by

e±1 = ∓ 1√
2

(ex ∓ iey), e0 = ez, (1.14)

and the components Mq are given by

M±1 = ∓ 1√
2

(Mx ± iMy), M0 = Mz. (1.15)

Note the sign difference in the definition of e±1 and M±1. With this definition the general solution for

free precession of the transverse components becomes

M∗±1(t) = M∗±1(0)e±iΩte−t/T2 .

Using spherical basis vectors gives us a more compact means for describing the length, orientation in

the x-y plane, and sense of rotation about the z-axis of the transverse components of the magnetization

vector. Most importantly, note that other than being multiplied by a phase factor e±iΩt, the M∗±1

components are unaffected by rotation about the z-axis.

The signal detected in the NMR experiment, written in terms of the magnetization components in

the rotating frame, is given by

S(t) = kM∗+1(t)eiφref , (1.16)

where φref is the receiver reference phase and k is a constant that depends on the receiver coil geometry

and the receiver frequency.

1.5.2 An RF Pulse

Now we consider the more difficult case of the static field and a magnetic field oscillating at a frequency

|ωrf |, which is always defined as positive. In the lab frame, we have

B(t) = 2B1 cos(|ωrf |t+ ψrf )ex +B0ez. (1.17)

Taken into the rotating frame we obtain5 an time independent expression for ωeff ,

ωeff = ω1[cosφ e∗x + sinφ e∗y].
5Here, we have defined the nutation or Rabi frequency as ω1 = |γB1|, and have redefined the phase of radio frequency

(rf) as φ = −(sign γ)ψrf to yield an expression for ωeff that is independent of the sign of γ.
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Z

X

Y
Beff(t)B0

B1

time

Bx(t)

B1

Z*

X*

Y*

ωeffφ

2B
1
cos(|ω

rf
|t + ψ

rf
)

Laboratory

Frame

Rotating

Frame

If the rf phase is set to φ = 0, then we get a solution for the transformation of M(0) into M(t)


M∗x

M∗y

M∗z

 Rx(ω1t)
−−−−−→


M∗x

M∗y cosω1t−M∗z sinω1t

M∗z cosω1t+M∗y sinω1t


rf pulse

along x∗-axis

(φ = 0),

(1.18)

Thus, the magnetic resonance approach to moving the magnetization from along z∗ to the x∗-y∗ plane

is seen as a simple rotation about a single axis in the rotating frame. A magnetization vector initially

along the +z∗ axis will be rotated counterclockwise to the −y∗ axis after a time ω1t = π/2.

Z*

X*

Y*

Z*

X*

Y*
ω1 t  = π/2

ω1

The time is called a 90◦ (or π/2) pulse length in NMR. The maximum signal will be detected in the

receiver coil after a 90◦ pulse.

If you turned the rf pulse on long enough so that ω1t = π, then you could also rotate the magnetization

from +z∗ to −z∗.
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Z*

X*

Y*

Z*

X*

Y*
ω1 t  = π

ω1

This is called a π-pulse (180◦-pulse). In the specific case when magnetization is taken from +z∗ to −z∗,

it is called an inversion pulse. After an inversion pulse, there will be no detectable signal in the receiver

coil. In practice, the strength of the ω1 is determined experimentally by systematically increasing the

pulse length until a full oscillation in signal strength is observed.

Similarly, if we set φ = π/2, then we would have a transformation of M(0) into M(t) according to


M∗x

M∗y

M∗z

 Ry(ω1t)

−−−−−→


M∗x cosω1t+M∗z sinω1t

M∗y

M∗z cosω1t−M∗x sinω1t


rf pulse

along y∗-axis

(φ = π/2).

(1.19)

Setting ω1t = π/2 with φ = π/2 gives a counterclockwise rotation about the y∗-axis which will rotate a

magnetization vector along +z∗ to the +x∗ axis.

Z*

X*

Y*

Z*

X*

Y*
ω1 t  = π/2ω1

Finally, let’s consider the effect of an rf pulse of arbitrary phase on the magnetization vector expressed

in terms of the spherical basis vector components. We find the effect of a π/2 pulse of arbitrary phase

to be 
M∗+1

M∗0

M∗−1

 Rφ(π/2)

−−−−−→


1
2M

∗
−1e

i2φ − i√
2
M∗0 e

iφ + 1
2M

∗
+1

i√
2
M∗−1e

iφ − i√
2
M∗+1e

−iφ

1
2M

∗
−1 + i√

2
M∗0 e

−iφ + 1
2M

∗
+1e
−i2φ

 (1.20)
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and the effect of a π pulse of arbitrary phase to be


M∗+1

M∗0

M∗−1

 Rφ(π)

−−−−−→


M∗−1e

i2φ

−M∗0
M∗+1e

−i2φ

 . (1.21)

Notice that the transverse components of the magnetization vector in the spherical unit vector bases,

that is, M∗+1 and M∗−1, are swapped by a π pulse,

In the literature, one often sees the following notations in NMR:

• (π/2)y which means a ω1t = π/2 pulse of B1 along the y-axis of the rotating frame

• (π/2)x which means a ω1t = π/2 pulse along x-axis of rotating frame

• (π/2)y or (π/2)−y which means a ω1t = π/2 pulse along −y axis of rotating frame

• (π)x which means a ω1t = π pulse along the x-axis of the rotating frame

Generally, one writes (β)φ where β = ω1t and φ is the rf pulse phase, that is,

φ = 0◦ → x

φ = 90◦ → y

φ = 180◦ → −x

φ = 270◦ → −y

1.5.3 The Bloch Decay

Now let’s consider the trajectory of the magnetization vector in the simplest NMR experiment: A single

(π/2)x pulse followed by acquisition of the NMR signal. Since we will ultimately be detecting the complex

magnetization component M+1(t) in the rotating frame with our receiver coil it is more convenient to

follow the trajectory of the magnetization vector expanded in terms of the spherical basis vectors. The
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evolution of the magnetization during this experiment will go as follows:

M = Meq︸︷︷︸
M0

e0.y(π/2)x

M† = −Meq︸ ︷︷ ︸
M∗†y

ey =
i√
2
Meq︸ ︷︷ ︸

M∗†−1

e−1 +
i√
2
Meq︸ ︷︷ ︸

M∗†+1

e+1

yfree evolution

M(t) =
i√
2
Meqe

−iΩte−t/T2︸ ︷︷ ︸
M∗−1(t)

e−1 +Meq(1− e−t/T1)︸ ︷︷ ︸
M∗0 (t)

e0 +
i√
2
Meqe

iΩte−t/T2︸ ︷︷ ︸
M∗+1(t)

e+1.

We obtain the signal detected in this experiment by plugging the M∗+1(t) component into Eq (1.16).

Setting the receiver phase, φref , to zero, we obtain

S(t) = − i√
2
kMeqe

iΩte−t/T2 = S(0)eiΩte−t/T2 . (1.22)

The time dependent signal after a single π/2 pulse is called a Bloch Decay, or more commonly known

as the Free Induction Decay (FID).

Real

Imaginary

time

π/2
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1.6 The Fourier Transform

The time domain free induction decay and the NMR spectrum are related by the Fourier transform. Most

everyone is familiar with the idea behind this transform. For example, in music a sound is represented

as a note on a staff representing frequencies. When you hear a note your ear is sensing oscillations in

air density, and your brain recognizes what frequency it is.

time

*

louder
softer

frequency

a
m

p
lit

u
d

e

The louder the note, the bigger the amplitude of the sound wave you hear. Also the higher the note,

the higher the frequency of sound oscillations you hear.

time

*

louder softer

frequency

a
m

p
lit

u
d

e

So we can view a musical note as either a time domain signal or frequency domain signal. Now, if you

have a good musical ear, you might be able to listen to more than one note simultaneously and be able

to distinguish more than one frequency.
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time

frequency

a
m

p
lit

u
d

e

What Fourier realized was how to mathematically relate some oscillating signal (like sound) and trans-

form it into a plot of amplitude versus frequency, that is

S(ω) =
∫ ∞
−∞

S(t)e−iωtdt. (1.23)

We integrate S(t) over all time for each ω to get S(ω). S(t) and S(ω) are called the time and frequency

domain signals, respectively. The inverse Fourier transform

S(t) =
1

2π

∫ ∞
−∞

S(ω)eiωtdω (1.24)

takes you from the frequency domain signal to the time domain signal. S(ω) and S(t) form a Fourier

transform pair. Let’s take the signal

S(t) = cos Ωt =
1
2

[eiΩt + e−iΩt] (1.25)

as an example.

time

+∞-∞

The Fourier transform of this signal is calculated according to

S(ω) =
∫ ∞
−∞

S(t) e−iωtdt =
1
2

∫ ∞
−∞

eiΩte−iωtdt+
1
2

∫ ∞
−∞

e−iΩte−iωtdt,

and becomes

S(ω) =
1
2
δ(Ω− ω) +

1
2
δ(−Ω− ω),

where

δ(x) =

 ∞ if x = 0

0 if x 6= 0

So the Fourier transform of S(t) = cos Ωt looks like
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frequency
+∞-∞

Ω−Ω 0

i.e., a spike at Ω and −Ω and zero everywhere else.

In this context a negative frequency has little meaning. However, in the context of the rotating frame,

we can connect this with the sense of circular motion of magnetization vectors. Here’s an example of

counter clockwise motion in the complex plane.

time

r

x

y

x

time
y

r  cos Ω t

r  sin Ω t

r

-r

r

-r

} r  exp( i Ω t)

A point in the complex plane is defined z = x + iy or in polar coordinates z = re−iθ. The Fourier

transform of this complex signal is

reiΩt
FT→ rδ(Ω− ω)

frequency
+∞-∞

Ω−Ω 0

Likewise clockwise motion in the complex plane is described by
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time

r

x

y

x

time
y

r  cos Ω t

-r  sin Ω t

r

-r

r

-r

} r  exp(-i Ω t)

and the Fourier transform of this complex signal is

reiΩt
FT→ rδ(−Ω− ω).

frequency
+∞-∞

Ω−Ω 0

In a rotating frame those magnetization vectors precessing slower than the rotating frame will appear

to rotate in the opposite direction of those precessing faster than the rotating frame.

Now let’s look at something more realistic - more like NMR, i.e., a signal that starts at time t = 0

and decays exponentially with time.

S(t) = eiΩte−t/T2

X Y

time time

In this case the limits of our integral go from zero to +∞, not −∞ to +∞.

S(ω) =
∫ ∞

0

eiΩte−t/T2e−iωtdt

=
1/T2

(1/T2)2 + (Ω− ω)2
+ i

(Ω− ω)
(1/T2)2 + (Ω− ω)2
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Our spectrum has a real and an imaginary part. The real part is called the Absorption mode spectrum

and the imaginary part is called the Dispersion mode spectrum.

A(ω) = λ
λ2 + ω2 ; Absorption Mode Lineshape

D(ω) = ω
λ2 + ω2 ; Dispersion Mode Lineshape

(1.26)

Here λ = 1/T2.

Real

Absorption

Mode

Imaginary

Dispersion

Mode

2/T2

ω ω

Ω Ω

2/T2

As you can see from these equations, while the lineshapes associated with the real and imaginary parts of

the NMR spectrum are different, they contain the same information. They are related by the Kramers-

Kronig relation

A(ω) =
1
π

∫ ∞
−∞

D(ω′)
ω − ω′

dω′ and D(ω) = − 1
π

∫ ∞
−∞

A(ω′)
ω − ω′

dω′. (1.27)

The tails of the dispersion lineshape extend further out than the absorption lineshape. These lineshapes

are characteristic of any damped oscillator problem. The names absorption and dispersion come from

optical spectroscopies. Generally, the specific form of the absorption- and dispersion-mode lineshape

functions in an NMR spectrum can vary depending on the system under study. Our particular example

has an exponentially decaying signal, whose well-known Fourier transform results in a Lorentzian

lineshape in the Absorption mode. For a Lorentzian lineshape the full width at half height, Γ, is

equal to 2/T2. Another common Fourier transform “pair” is the Gaussian decaying signal, whose Fourier

transform is a Gaussian lineshape in the Absorption mode. Gaussian lineshapes tend to arise when there

is a distribution in resonance frequencies. That is, when the signal arises from many transitions, each

having ever so slightly different transition frequencies, then the overall lineshape becomes Gaussian.
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This is often explained in terms of the Central Limit Theorem6. Lorentzian lineshapes are observed in

liquid state NMR spectra, whereas Gaussian lineshapes are more common in solid-state NMR spectra.

1.6.1 Phase Corrections

Whenever you have complex signals you always have the issue of the phase relationship between the real

and imaginary parts. Recall the relationships

z = x+ iy = reiφ, (1.28)

where

φ = tan−1 y

x
and r =

√
x2 + y2. (1.29)

In our context of circular motion in the complex plane we have a vector rotating where r is the length

of the vector and φ is the angle from the x axis.

y

x
φ

Let’s look at how this picture is used in NMR, and how it relates to phase corrections of NMR spectra.

Immediately after applying a π/2 pulse along the y axis the magnetization previously along z will now

be along the x axis, and begins precessing in the x-y plane of the rotating frame. If we plotted the tip

of the net magnetization vector in the x-y plane as it evolved we would see

6This theorem says that when you have many different contributions to the lineshape, each with their own characteristic

lineshape, then in the limit that you have a infinite number of contributions the final lineshape will be Gaussian, even if

none of the individual lineshapes are Gaussian. An important condition is that the component have the same order of

magnitude and that no single source dominates all the others.
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x detector

y detector

path of tip of
magnetization vector
as it precesses

time

time

1.6.1.1 Zeroth Order Phase Correction

What happens if the magnetization doesn’t start out exactly lined up with the x-axis at t = 0, but

rather is offset from the x-axis by an angle φ?

x detector

y detector

time

time

φ

The complex Fourier transform of this signal may look like
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Real Imaginary

and neither of these look like absorption or dispersion mode signals. In this case we can calculate what

is in the real and imaginary parts. It is given by

S(ω) = [A(ω − Ω) + iD(ω − Ω)]eiφ (1.30)

which can be expanded out to

S(ω) = [A(ω − Ω) cosφ−D(ω − Ω) sinφ]︸ ︷︷ ︸
real part

+ i[A(ω − Ω) sinφ+D(ω − Ω) cosφ]︸ ︷︷ ︸
imaginary part

. (1.31)

One can show that when φ = π/2 (i.e., magnetization starts precessing from along the y axis), then the

Fourier transform of the resulting signal will be

S(ω) = −D(ω − Ω) + iA(ω − Ω). (1.32)

Since the conventional in NMR is to report only the absorption mode spectrum it is standard procedure

to apply a phase correction to the spectrum (or fid) so that the real part of the spectrum contain only

the absorption mode spectrum. The spectrum is corrected by the simple application of a zeroth order

phase correction,

S′(ω) = S(ω)e−iφ0 , (1.33)

where φ0 is adjusted until φ0 = −φ and the spectrum contains pure absorption mode lineshapes in the

real part.

1.6.1.2 First Order Phase Correction

Now let’s consider when we have two or more resonances present in the spectrum. In a given time the

magnetization for site 2 will have rotated further around than the magnetization for site 1. For example,

think of two athletes running around a track. At the starting line they are in-phase with each other.

After they start running, the faster runner will be further along the track than the slower runner so
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there will be a phase difference. In principle, this is no problem since they both start out at the same

point and the Fourier transform gives pure absorption mode spectra for both sites in the real part and

pure dispersion mode spectra for both sites in the imaginary part.

Ω1 Ω2

y

X

Ω2

Ω1

Real Imaginary

Even if our detector is 45◦ away from the starting point then we phase correct the spectrum to get the

pure absorption mode in real and pure dispersion mode in the imaginary part. The problem comes in if

you’re late and miss the starting point. That is, you turn your detector on at the some time t0 after the

starting point. Then what you may see is . . .

y

X

Ω2

Ω1

Ω1

Ω2
Real Imaginary

Site 2 had precessed significantly ahead of site 1 before the receiver was turned on. Now the phase we

need to make site 1 have a pure absorption mode spectrum in the real part is not the same as the phase

needed for site 2. The phase correction we need can be calculated from the frequency of each site. Thus,
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we define our phase correction as linearly dependent on ω,

φ(ω)︸︷︷︸
total phase

= φ0︸︷︷︸
0th order

+ ωt0︸︷︷︸
1st order

(1.34)

where t0 is the time we were late in starting the detector. Each frequency in the spectrum gets a different

phase correction. Thus, we apply

S′(ω) = S(ω)eiφ0eiωt0 , (1.35)

to obtain a spectrum with both sites in pure absorption mode in the real part of the spectrum. Applied

to our example, we obtain

Ω1 Ω2

Real Imaginary

Actually, you get pure absorption mode lineshape in the real part plus a sinc-type function distortion in

the baseline. Remember that the time shift theorem says that a time shift can be effected by a phase

shift in the frequency domain.

S(t− t0) F.T.↔ S(ω)eiωt0 (1.36)

So, in effect, by applying the phase shift to get pure absorption mode spectrum you are shifting the

time domain signal so that the time origin is where it should have been, which we can see from the

convolution theorem is like multiplying a “correctly” acquired (i.e., acquisition started at t = 0) signal

by a step function.

P. J. Grandinetti, November 23, 2009



1.6. THE FOURIER TRANSFORM 31

F. T.

F. T.

F. T.

S2(t) S2(ω)

S1(t)

ST(t)

S1(ω)

ST(ω)

0

1

X
=

*
=

(Convolution)

(Multiplication)

Here’s an algorithm for phasing a spectrum containing multiple resonances. Take, for example, the

unphased spectrum below.

ω

Apply zeroth order phase correction until one peak is completely absorption mode lineshape.

ω

Ω1

one peak
"phased"
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Since this peak (at Ω1) should look the same when the whole spectrum is phased, then we know any

further phase corrections should not affect this peak. To force this constraint we set

φ(Ω1) = φ0 + Ω1t0 = 0.

With this equation we can solve for φ0 obtaining

φ0 = −Ω1t0,

and substituting this expression back into Eq. (1.34) we obtain

φ(ω) = (ω − Ω1)t0. (1.37)

Now the only adjustable variable is t0, and we can vary it until all the peaks are pure absorption mode.

ω

In this approach, Ω1 is sometimes called the “pivot” frequency.
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1.7 Inhomogeneous External Magnetic Fields and T ∗2

So far we have assumed that the external magnetic field was the same for all spins throughout the sample.

In practice, however, there will be some spatial variations in the external magnetic field strength across

the sample. Let’s consider the effect of an inhomogeneous external magnetic field on our NMR spectrum.

A spatial variation in the external magnetic field makes the precession frequency depend on position

in sample, that is

ω0(r) = γ(1− σ)B0(r).

The total signal in the rotating frame becomes an integral over the volume of the sample,

Stotal(t) =
∫ ∫ ∫

ρ(r)eiΩ(r)t · e−t/T2dV,

where ρ(r) is the density of nuclei at r. Even without knowing the functional form of the spatial variation

in magnetic field and thus frequency, it is easily concluded that the decay of the total signal will be faster

in an inhomogeneous field compared to a homogeneous field. For example, if there is a distribution of

frequency clearly at long times the individual signal oscillations will be out of phase and thus will be

destructively interfering at long times. Whereas at short times the oscillations from different signal

will still be relatively in phase and will add up more constructively than at later times. The Fourier

transform of a time domain signal from a sample in an inhomogeneous magnetic field will appear wider

than the signal of a sample in a homogeneous field. Without knowing the functional form for the spatial

field variations, it is impossible to predict the absorption mode lineshapes. Thus in the presence of an

inhomogeneous magnetic field the full width at half height, Γ, can not longer be simply related to T2,

i.e., Γ 6= 2/T2.

ω

2/T2 Γ

Often times, NMR spectroscopists will measure the full width at half height of an inhomogeneous broad-

ened lineshape and use this number to report a quantity called T ∗2 , defined as

T ∗2 = 2/Γ.

One should not conclude, however, that a reported T ∗2 means that lineshape is Lorentzian.
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1.8 Limitations of the Bloch Equations

1.8.1 Nuclei with Electric Quadrupole Moments

We have seen that a nucleus with a non-zero angular momentum possesses a magnetic dipole moment

vector. For the 1H isotope, which only contains a single proton of spin I = 1/2, the nucleus only has the

three internal degrees of freedom associated with the three components of its magnetic dipole moment

vector. The Bloch equations were designed to describe an ensemble of such spin 1/2 nuclei, each having

only three internal degrees of freedom.

In heavier isotopes and elements, the nucleus of the atom will contain additional protons and neutrons,

and with them a corresponding increase in the available degrees of freedom for the nucleus. Although

neutrons have no charge, they do have a spin angular momentum and a magnetic moment. With an

increase in the number of nucleons we will find additional degrees of freedom within the nucleus that

can be manipulated in the NMR experiment. These additional degrees of freedom can be described

in terms of higher order magnetic and electric multipole moments. Due to symmetry restrictions only

certain magnetic and electric multiple moments are allowed as a function of total angular momentum.

The allowed moments up to l = 4 (hexadecapole) are summarized below for isotopes with total angular

momentum up to I = 2.

Nuclear l = 0 l = 1 l = 2 l = 3 l = 4

Spin monopole dipole quadrupole octapole hexadecapole

I = 0 electric 0 0 0 0

I = 1
2 electric magnetic 0 0 0

I = 1 electric magnetic electric 0 0

I = 3
2 electric magnetic electric magnetic 0

I = 2 electric magnetic electric magnetic electric

Every multipole moment, l, will bring 2l + 1 additional degrees of freedom to the nucleus in the NMR

experiment. The Bloch equations, designed to describe an ensemble of uncoupled spin 1/2 nuclei, are

inadequate for uncoupled nuclei with spin I > 1/2, that is, with more than three degrees of freedom. It

is possible to modify the Bloch Equations to describe this higher dimensional motion, but this motion is

just as easily described using the well-established machinery of quantum mechanics. In later chapters,

we will look in detail at how quantum mechanics describe the NMR experiment.

It is also useful to note that just as the nuclear magnetic dipole moment interacts with external

magnetic fields, the nuclear electric quadrupole moment interacts with external electric fields, or more
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specifically, surrounding electric field gradients. These electric field gradients are generated by orbiting

electrons as well as neighboring nuclei. Additionally, just as the vector elements of the nuclear magnetic

dipole moment precess in an externally applied magnetic field, the tensor elements of the nuclear electric

quadrupole moment will precess in an external electric field gradient7. Measuring the frequencies of

these oscillations allows us to measure the electric field gradient surrounding a nucleus, which in turn

provides information about the local geometry and bonding around that atom.

Q Electric quadrupole moment causes

atomic nucleus to precess 

in an electric field gradient
B

μ
Magnetic dipole moment causes

atomic nucleus to precess 

in a magnetic field

Vzz

Vyy

Vxx

In principle, there will be couplings between the higher nuclear multipole moments and surrounding

electric and magnetic fields, but in practice, attempts to measure such couplings have been inconclusive

[3].

1.8.2 Coupling between distinguishable nuclei

So far in our discussion we have only considered isolated nuclei interacting with external magnetic and

electric fields. In samples containing nuclei with abundant NMR active isotopes there will also be

interactions between nuclear magnetic moments.

1.8.2.1 Magnetic Dipole Coupling between Nuclei

The classical interaction energy between two magnetic moments µ1 and µ2 is given by

E =
µ1 · µ2

r3
− 3(µ1 · r)(µ2 · r)

r5
,

7One might wonder if it is possible to directly detect the oscillations in the electric quadrupole moment tensor elements

with a quadrupole condensor and measure the distribution of electric field gradients experienced by the nuclei in the

sample. Although such experiments have been suggested [2], the direct measurement of the oscillations of the nuclear

electric quadrupole moment are much less sensitive than the indirect measurement of their oscillations with NMR through

their effect on the magnetic dipole vector oscillations.
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and where the r is the internuclear vector, and µ1 and µ2 are the vectors describing the direction of

each magnetic moment.

r

µ
2

µ
1

φ

θ

1.8.2.2 Indirect J Coupling between Nuclei

In addition to the direct dipolar coupling between nuclei there will also be an indirect J coupling

between nuclei. The mechanism behind J coupling is more theoretically involved than the dipolar

coupling. Qualitatively, we can think of J coupling as a two step process. First, the magnetic moments

of valence electrons orbiting nucleus A get polarized in the same direction as the A nucleus’ magnetic

dipole moment. The polarized valence electrons then move to nucleus B, producing a small magnetic

field that shifts the resonance frequency of nucleus B. The same process occurs in reverse, and in this

manner, A and B become indirectly coupled.

A B

e
-

In either case, the total magnetic field experienced by a nucleus will vary depending on the spin state

of neighboring nuclei. In such a situation we again find that the Bloch equations are inadequate for
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coupled nuclei because they have more than three degrees of freedom. Additionally, the direct dipole-

dipole and the indirect J coupling depend on the orientation of the internuclear vector and bonding

orbitals, respectively. In the liquid and gas state this orientation dependence is averaged away by rapid

molecular reorientations. Direct dipole-dipole couplings average to zero in liquids, whereas J couplings

average to a non-zero scalar value.
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1.9 Measuring Relaxation Times

Since NMR relaxation arises from the fluctuating fields produced by molecular motion, it is possible to

use NMR relaxation times to characterize and quantify this motion. In this section we will examine

two common approaches for measuring the spin-lattice relaxation time, T1, introduced with the phe-

nomenological Bloch Equations. It is important to note, however, that the Bloch equation’s assumption

of a single exponential recovery time is not valid for nuclei that have any time independent couplings,

as described in the last section. That is, the Bloch Equations assume that all couplings, such as the

quadrupolar, dipolar, and J coupling, are averaged to zero by molecular motion, or selective rf irra-

diation (i.e., spin decoupling). If this is not true, multi-exponential recoveries can occur and a single

exponential recovery time, i.e., T1, would no longer be appropriate. The problem is still tractable, but

a more detailed analysis of the data is required, often combined with other experiments, and will not

be described in this section. If your main goal is to obtain a proper value for the equilibration time so

that the signal-to-noise ratio is acceptable and the integrated intensities are quantitative then it is not a

problem if your recovery is not exponential. Performing the saturation or inversion recovery experiment

described below is sufficient to determine the equilibration time needed for all the magnetization to

recover, i.e., ∼ 99% of Meq.

1.9.1 Spin-Lattice Relaxation Times

In this section, we will assume the nuclei relax with single exponential recoveries, and describe two

experiments for measuring the spin-lattice relaxation time T1: the saturation recovery method and the

inversion recovery method.

1.9.1.1 The Saturation Recovery Experiment

In the saturation recovery experiment the magnetization is rotated from z to the x-y plane and allowed

to completely dephase during a period τ that is set to approximately 2 or 3 times T2. This process is

repeated many times so there exists no net magnetization in any direction, and the magnetization is

saturated. During the time t1 the magnetization recovers, growing along the z-axis. This recovery is

monitored by applying a π/2 pulse after t1 and measuring the signal intensity.
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(     )τ

n

π/2

t1

π/2

t2

repeat sequence

inside parantheses

n times.

From the Bloch equations we know the z-component of the magnetization will recover according to

Mz(t) = Meq(1− e−t1/T1) +Mz(0)e−t1/T1 .

Inserting the initial condition created by the saturation pulse train, Mz(0) = 0, into this expression we

obtain

Mz(t1) = Meq(1− e−t1/T1).

Below is a plot of the percent recovery of the longitudinal (Mz) magnetization as a function of t1 given

in multiples of T1.
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2 10
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Meq

4 6 80 t1/T1

At t1 = 0 we have Mz(0) = 0 and at t1 =∞ we have Mz(∞) = Meq. The saturation recovery experiment

provides a less precise measurement of T1 than the inversion recovery experiment, described in the next

section. Unlike the inversion recovery experiment, however, the saturation recovery experiment doesn’t

require an equilibration time, and for samples with long T1 values (greater than 30 seconds) this can

lead to significant shorter experiment times.
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1.9.1.2 The Inversion Recovery Experiment

In the inversion recovery experiment the magnetization is rotated from the +z axis to the −z axis. The

magnetization recovers and grow back towards the +z axis during a t1 period. The recovery of the

magnetization is monitored by applying a π/2 pulse after t1 and measuring the signal intensity.

π

t1

π/2

t2
equilibration

time

Again, using the Bloch equations we have

Mz(t) = Meq(1− e−t1/T1) +Mz(0)e−t1/T1 .

Here we have Mz(0) = −Meq so

Mz(t) = Meq(1− 2e−t1/T1).

Below is a plot of the percent recovery of the longitudinal (Mz) magnetization as a function of t1 given

in multiples of T1.
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At t1 = 5T1 then Mz(5T1) = 0.993Meq. The inversion recovery experiment has a wider range of signal

variation that makes it more precise. A quick approach for estimating T1 is to locate the time t1 = τ

when Mz(τ) = 0. One can then show that T1 = τ/ ln 2. The disadvantage of the Inversion Recovery

sequence is that you need an equilibration time of a least five times the longest T1. Since you don’t know

T1 then you have to guess, and this makes the process somewhat iterative.
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1.9.2 Spin-Spin Relaxation Times

In theory one can obtain T2 by taking half the inverse of the full width at half height in Hertz of

a resonance in an NMR spectrum. Unfortunately, the line widths of resonances in NMR are often

dominated by the inhomogeneities in the magnetic field rather than T2.

1.9.2.1 The Spin Echo Experiment

It turns out that in many systems it is possible to measure the true T2 even in the presence of inhomo-

geneous broadening. One approach is to apply a second rf pulse before detecting the signal. Consider

the following sequence

equilibrate− (π/2)x − t1 − (π)x − t2 −→

How is the signal detected during t2 affected by this two pulse sequence? Let’s examine the path of

the magnetization vector under this sequence of events. To simplify our discussion, we will assume

that t1 + t2 � T1, and neglect spin-lattice relaxation. The evolution of the magnetization during this

experiment will go as follows:

M = Meq︸︷︷︸
M0

e0.y(π/2)x

M† =
i√
2
Meq︸ ︷︷ ︸

M†+1

e+1 +
i√
2
Meq︸ ︷︷ ︸

M†−1

e−1

yt1 evolution

M(t1) =
i√
2
Meqe

iΩ(r)t1 · e−t1/T2︸ ︷︷ ︸
M+1(t1)

e+1 +
i√
2
Meqe

−iΩ(r)t1 · e−t1/T2︸ ︷︷ ︸
M−1(t1)

e−1

y(π)x

M(t1)† =
i√
2
Meqe

−iΩ(r)t1 · e−t1/T2︸ ︷︷ ︸
M+1(t1)†

e+1 +
i√
2
Meqe

iΩ(r)t1 · e−t1/T2︸ ︷︷ ︸
M−1(t1)†

e−1.

yt2 evolution

M(t1, t2) =
i√
2
Meqe

−iΩ(r)(t1−t2) · e−(t1+t2)/T2︸ ︷︷ ︸
M+1(t1,t2)

e+1 +
i√
2
Meqe

iΩ(r)(t1−t2) · e−(t1+t2)/T2︸ ︷︷ ︸
M−1(t1,t2)

e−1.
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Notice that the effect of the (π)x pulse is to swap the M+1 and M−1 coherences. Focusing on the

transverse magnetization we see that when t1 = t2 = τ we get the remarkable result

M(τ) =
i√
2
Meqe

−2τ/T2︸ ︷︷ ︸
M+1(τ)

e+1 +
i√
2
Meqe

−2τ/T2︸ ︷︷ ︸
M−1(τ)

e−1.

When both t1 and t2 are increased while keeping t1 = t2, the evolution of the signal will be independent

of Ω(r). In this two pulse experiment on samples with large inhomogeneous line broadenings the signal

can even appear dead after the π/2 pulse but after a π pulse the signal returns in what is called a spin

echo8.

time

π/2 π

t
2

t
1 

=
 
t
2

t
1

That is, independent of the frequencies Ω(r) present, the magnetization vectors for all sites return to

the starting point (the y axis) when t1 = t2. The only decay of the echo top (refocussed magnetization)

is due to T2 relaxation. This sequence gives us a method of measuring T2 in the presence of field

inhomogeneities.

The spin echo arises in many other contexts in NMR, and will be a key concept in understanding

numerous multi-dimensional NMR experiments. A popular analogy for the spin echo experiment is to

consider a group of runners lined up at the starting line of a circular track. When the whistle is blown

(the π/2 pulse), the runners begin running at various speeds depending on their abilities. After a time

t1, the whistle is blown again (the π pulse) and the runners all stop and run in the opposite direction.

At a time t2 = t1 after the second whistle the runners, if they ran at the same speed in both directions,

will all pass the starting line simultaneously as they continue running in the opposite direction. This

lining up of the runners as they pass the starting line is analogous to what happens to the magnetization

in the spin echo experiment.

8Sometimes called the Hahn spin echo, after its discover Erwin Hahn.
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There are two possible complications with measuring T2 values with the spin echo experiment. The

first occurs for nuclei experiencing homonuclear J-couplings. Here, the echo tops are modulated as a

function of t1 due to evolution under the J-coupling. This evolution cannot be refocused by the π pulse.

The second complication arises from molecular diffusion. If a molecule diffuse from one region of the

sample to the next in a field gradient, then it may have different resonance frequencies during t1 and t2.

Here there will be an incomplete refocusing of the echo.

1.9.2.2 Carr-Purcell Meiboom-Gill sequence

Carr and Purcell proposed a multiple echo sequence to minimize the effects of translational diffusion

when measuring T2, which, as modified by Meiboom and Gill and shown below, is commonly called the

CPMG sequence.

time

(π/2)x πy

τ τ τ

π-y

τ τ τ τ τ τ τ τ

πy π-y πy π-y
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1.10 Coherence Transfer Pathways

Consider the two pulse NMR experiment shown below.

β1

t
1 t

2

β2

Is this the Spin Echo experiment of section 1.9.2, or the T1 inversion recovery experiment of sec-

tion 1.9.1.2? You might say it depends on the rotation angle used for the two pulses. That is, the

spin echo experiment uses a π/2 and a π for the first and second pulse, respectively, whereas, the T1

inversion recovery experiment uses a π and a π/2, respectively. In a sense, that is correct. But what if

both pulses were 2π/3 rotations? Would we observe a spin echo signal, an inversion recovery signal, or

both? The answer is that we would observe both. This illustrates a common problem in multiple pulse

NMR spectroscopy. There can be many different types of signals associated with the same pulse se-

quence, some desired and some undesired. To separate desired from undesired signals it is first necessary

to understand how different signals originate from the same pulse sequence.

Consider the spin echo experiment. If we followed the path of the magnetization vector component

responsible for the spin echo signal through the sequence we find that it starts out along the e0 direction,

moves to the e−1 direction during t1, and then to the e+1 direction during t2 where it is detected. This

“pathway” is different from the one associated with the inversion recovery pathway, where the detected

magnetization vector component follows the path e0 → e0 → e+1. Note that the magnetization vector

components only change direction during a pulse, and, as we saw in Eq. (1.5.1), during free evolution

their directions remain unchanged.

If we wrote out all magnetization vector pathways possible in the two pulse experiment for arbitrary

pulse lengths the resulting expansion would quickly become complicated. As you can see below, with

each pulse the number of terms in the expansion grows exponentially.

e0

 e+1 e-1  e0

e+1e-1 e0

β
1

t1
t2

β
2

M/Meq =

M(t1)/Meq = a0,-

(1)

a0,0

(1)
a0,+

(1)

+ +

M(t2)/Meq = a+,-

(2)

a0,+

(1)

a+,0

(2)

a0,+

(1)

a+,+

(2)

a0,+

(1)

+ +e+1e-1 e0a0,-

(2)

a0,0

(1)

a0,0

(2)

a0,0

(1)

a0,+

(2)

a0,0

(1)

+ +e+1e-1 e0a-,-

(2)

a0,-

(1)

a-,0

(2)

a0,-

(1)

a-,+

(2)

a0,-

(1)

+ + + +
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After two pulses there will be 9 different terms contributing to the total magnetization, each multiplied

by coefficients that carry the history of each term. Tracing the origins of each of these terms back to

the initial magnetization along e0 also reveals all the possible transition frequency modulations that can

be present in a signal. These possibilities can be graphically represented in what is called a coherence

transfer pathway.

0

-1

+1

(β1)φ1
t
1 t

2

(β2)φ2

Start along e0 
Pulse changes coherence order.  

Shown here is one possibility where

the coherence order goes 

from e0      e-1

2nd pulse changes coherence order.  

Shown here is one possible change in 

coherence order from e-1      e+1

q

This pathway is associated with the underlined terms in our two magnetization vector expansion. For

the two pulse sequence on a spin 1/2 there are eight other such “pathways”. Below are examples of

three others.

or

or

t
1 t

2

(β1)φ1 (β2)φ2

0

-1

+1

0

-1

+1

0

-1

+1

q

q

q

It is left as an exercise for the reader to draw the remaining pathways. The signals associated with each

of the nine different pathways are not all unique. A pathway can give rise to a signal that is the complex

conjugate of another. These complex conjugate pathways are easily identified since they will be mirror

images of each other about the q = 0 coherence level. For example, the two pathways below are mirror

images of each other about the q = 0 coherence level and therefore represent signals that will be complex

conjugates of each other.
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and

t
1 t

2

(β1)φ1 (β2)φ2

0

-1

+1

0

-1

+1

q

q

If you remove the redundancy of mirror image pathways, then the number of pathways that give rise to

unique signals in a two pulse sequence on a spin 1/2 system is five. If we consider only those that end

on the q = +1 coherence level, that is, assume that our receiver is a perfect detector of the observable

M+, then we only need to consider three pathways. Before we consider these three pathways, we note

that, for reasons related to the quantum mechanical treatment of NMR the convention in NMR is to

draw the mirror image (or complex conjugate) pathway with the coherence levels labeled as p, where

p = −q. With that in mind, let’s now consider the three pathways below.

t1 t2

1

2

3

(β1)φ1 (β2)φ2

0

+1

-1

0

+1

-1

0

+1

-1

p

p

p

Each of these pathways describe a different NMR signal. For example, the Spin Echo experiment is

described by pathway 1. Assuming that the absolute frequency associated with the p = ±1 coherence

levels doesn’t change between t1 and t2, then the change in the sign of the coherence level from p = −1

in t1 to p = +1 in t2 will lead to an echo formation during t2 when t2 = t1. Similarly, the inversion-

recovery T1 measurement experiment is described by pathway 2. The Anti-Echo experiment is described

by pathway 3. It has this name because when t1 = 0 the Anti-Echo pathway signal in t2, like the Echo

pathway signal, contains only the right half of a spin echo signal, and with increasing t1 the anti-echo

signal maximum moves backwards in t2, occurring “virtually” at the negative times t2 = −t1, where it

cannot be detected.
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Let’s consider the pathways for the two other experiments we’ve discussed so far, the saturation

recovery and the CPMG sequences. In the saturation recovery experiment we have

(     )τ

n

π/2

t1

π/2

t2

0

+1

-1

p

During the train of n pulses we intend to saturate the magnetization, and desire no coherence transfer

at all. Thus we write the pathway during the pulse train to reflect no change in the coherence order9

During the recovery time, t1, there will be recovery along the z axis, which we will measure with the

final π/2 pulse. The goal of the final π/2 pulse is to convert the M0 (p = 0) order into an M+ (p = −1)

coherence that we can detect with our receiver coil.

In the CPMG experiment there will be two pathways from which we will acquire signal. The signal

acquired from sequential echo tops will alternate between the two pathways shown below.

time

(π/2)x πy

τ τ τ

π-y

τ τ τ τ τ τ τ τ

πy π-y πy π-y

0

+1

-1

p

Because the two pathways are mirror images their signals will be complex conjugates of each other.

Although signal from a given pathway will be missing every other point, the signal from a single pathway

with all points can be reconstructed by combining the signal of one pathway with the complex conjugate

of the other pathway.

An ensemble of coupled spin 1/2 nuclei, or an ensemble of uncoupled nuclei with spin I > 1/2, will

have additional degrees of freedom that can be manipulated in the NMR experiment. These additional

degrees of freedom are represented in coherence transfer pathways as coherence orders beyond p = ±1.
9Technically, one might argue that there is no magnetization along e0 direction after the pulse n pulses, when t1 = 0,

since the magnetization is saturated. That is correct. For practical purposes, however, we group this saturated state with

the e0 magnetization components.
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For example, a single spin I will have coherence orders extending over −2I ≤ p ≤ 2I. Generally, N

coupled spins will have coherence orders extending over −2L ≤ p ≤ 2L, where L =
∑
k Ik.

P. J. Grandinetti, November 23, 2009



1.11. MEASURING TRANSLATIONAL DIFFUSION COEFFICIENTS 49

1.11 Measuring Translational Diffusion Coefficients

The dependence of the echo intensity on molecular diffusion can be exploited as a means to measure

translational diffusion coefficients [4, 5]. By applying linear magnetic field gradient,

B(r) = B0 + G · r,

across the sample and performing the spin echo experiment one can solve the modified Bloch equation,

dM(r)
dt

= γ′M(r)×B(r, t)− [R]{M(r)−Meq}+D∇2M(r). (1.38)

to obtain an analytical expression for the echo intensity, given by

S(τ,G) = S(0, 0) exp
(
−2

3
Dγ2G2τ3 − 2τ/T2

)
. (1.39)

By applying a systematic variation in magnetic field gradient strength, G, as well as the echo dephasing

time, τ , one can measure both the diffusion coefficient, D, and spin-spin relaxation time, T2.

π/2 π

Gradient

rf ττ

0

+1

-1

p

1.11.1 Pulsed Field Gradients

A more robust method for measuring diffusion coefficients employs pulsed field gradients [6] instead of

a static field gradient. In this approach, as illustrated below, the gradient is pulsed on before and after

the π pulse, each time for a duration of δ.
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π/2 π

Δ

G G

δ δ

Gradient

rf ττ

0

+1

-1

p

The analytical expression for the echo intensity is given by

S(τ,G) = S(0, 0) exp
(
−γ2G2δ2D(∆− δ/3)− 2τ/T2

)
, (1.40)

where ∆ is the time between the two gradient pulses. Since the detection of the echo signal occurs in a

relatively homogeneous magnetic field a high resolution spectrum with higher sensitivity is obtained. This

is particularly advantageous for making simultaneous measurements of diffusion coefficients in samples

containing mixtures of molecules. Additionally, the experimenter has the additional option of varying

the gradient pulse duration, δ, gradient pulse interval, ∆, or gradient strength, G, when measuring the

diffusion coefficient. A plot of log[S(2τ)/S(0)] versus δ2(∆− δ/3)G2 should yield a straight line passing

through the origin with a slope of −0.4343γ2D. With pulsed field gradients, values of D as low as 10−9

cm2 sec−1 can be measured. This is about two orders of magnitude slower than D values measurable

with static field gradients.

It is also possible, with this sequence, to measure flow: a coherent motion of all molecules with a

uniform velocity vector v. The effect of flow is to cause a phase modulation of the echo tops. Combined

with the attenuation of the echo tops due to diffusion the analytical expression for the echo intensity is

given by

S(τ,G) = S(0) exp
(
iγδG · v∆− (γGδ)2D(∆− δ/3)− 2τ/T2

)
. (1.41)

Finally, recall that the CPMG sequence can be used to minimize the effects of translational diffusion

(and flow) when measuring T2. In the presence of a gradient the CPMG echo intensities will be given

by

S(t = 2nτ) = S(0) exp
(
−1

3
γ2G2τ2Dt− t/T2

)
. (1.42)
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By reducing the time, τ , between π pulses, the effect of the diffusion can be minimized, and the T2 can

be measured more reliably.
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1.12 Interpreting Relaxation Times

Constructing a theoretical model to interprete NMR relaxation times can be relatively simple or com-

pletely intractable, depending on the sample. The general approach starts with determining which

fluctuating couplings contribute to the relaxation process. For spin 1/2 nuclei these couplings typically

arise from magnetic dipole interactions, whereas for spin I > 1/2 they can arise from electric quadrupole

as well as magnetic dipole interactions. For each of these possibilities we can obtain an expression for

the relaxation times, and the overall spin relaxation rates will be the sum from all the contributions,

1
T1

=
(

1
T1

)
paramagnetic

+
(

1
T1

)
quadrupole

+
(

1
T1

)
dipole

+
(

1
T1

)
chem.shift

+ · · · . (1.43)

Like resistors in parallel, we see that relaxation can easily be dominated by one coupling that is larger

than the rest. Typically, the relaxation is dominated by fluctuating unpaired electron-nuclear dipolar

couplings, followed by quadrupolar couplings, dipolar couplings, and chemical shift anisotropy. Also

important is whether the fluctuating couplings experienced by a nucleus are coming from other nuclei or

electrons in the same molecule (intramolecular couplings) or other molecules (intermolecular couplings).

Chemical shift and electric quadrupole couplings are generally intramolecular, whereas dipolar couplings

can be intra- or inter-molecular.

1.12.1 Time Correlation and Spectral Density Functions

Fluctuations in couplings arise from fluctuations in the distances and orientations of atoms and molecules

nearby the nucleus in question. Thus, we introduce the concept of a time correlation function to quantify

the time scale on which these fluctuations occur. For example, the time correlation function for an

intermolecular distance vector can be written

G(τ) = 〈r(t) · r(t+ τ)〉,

where the angle brackets represent an ensemble average. In the same manner one can imagine a time

correlation function for a nuclear spin coupling, C, that depends on the same fluctuating internuclear

vector,

GC(τ) = 〈C(r(t))C(r(t+ τ))〉,

which we more simply write as

GC(τ) = 〈C(t)C(t+ τ)〉.

P. J. Grandinetti, November 23, 2009



1.12. INTERPRETING RELAXATION TIMES 53

We can also write the time-correlation function of two different couplings,

GCD(τ) = 〈C(t)D(t+ τ)〉.

This is called a cross-correlation function, whereas GC(τ) is called an auto-correlation function.

The spectral density function is the Fourier transform of the time correlation function,

J(ω) =
∫ ∞

0

G(τ)e−iωτdτ

J(ω)

ω

ω0

slow

motion

fast

motion

intermediate

motion

One of the simplest models is that of random isotropic molecular tumbling where

G(τ) = G(0)e−|τ |/τc ,

where τc is the reorientational correlation time for the molecular tumbling. The Stokes-Einstein-Debye

relation predicts the reorientational correlation time as

τc =
ηsV

kT
, (1.44)

where ηs is the solvent viscosity and V the solvated volume of the rotating molecule. If we assume

that the Stokes-Einstein-Debye relation holds, then the NMR relaxation times can be used to obtain

information about molecular size or local viscosity. This equations also provides an understanding of

why it is difficult to obtain high resolution solution-state NMR studies of molecules with large molecular

weights. With increasing molecular size, there will be a corresponding increase in molecular reorientation

times which in turn leads to decreased T2, and excessive line broadenings.
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1.12.2 Relaxation via Dipolar Couplings

To describe time correlation functions for translational and reorientation motion it is convenient to use

the three functions
F0(r, θ, φ) =

1
r3

(1− 3 cos2 θ),

F1(r, θ, φ) =
1
r3

sin θ cos θ exp(iφ),

F2(r, θ, φ) =
1
r3

sin2 θ exp(i2φ),

(1.45)

which are related spherical harmonic functions, with the angles θ and φ and the distance r defined on

page 36 for the dipolar coupling. Using these definitions we further define the time correlation and

spectral density functions,

Gn(τ) = 〈Fn(t)Fn(t+ τ)〉, and Jn(ω) =
∫ ∞

0

Gn(τ)e−iωτdτ. (1.46)

One can further show that the spectral density functions with different n are all related to a single

function j(ω), called the reduced spectral density function, according to

b2 j(ω) =
15
12
J0(ω) =

15
2
J1(ω) =

15
8
J2(ω), (1.47)

where

b = −µ0~γIγS
4πr3

(1.48)

If we assume the spectral density function arises from a simple model of isotropic molecular tumbling,

having a single reorientational correlation time τc, then j(ω) is given by

j(ω) =
2τc

(1 + ω2τ2
c )
. (1.49)

In the limit of extreme narrowing, ω0τ � 1, we obtain

j(ω) ≈ 2τc, (1.50)

1.12.2.1 Nuclei with Identical Resonance Frequencies

When there is a dipolar coupling between two nuclei with the same angular momentum, I, and resonance

frequency, ω0, then the spin lattice relaxation arising from the modulation of the dipolar coupling is given

by
d(Mz1 +Mz2)

dt
= − 1

T1

{
(Mz1 −Meq

z1 ) + (Mz2 −Meq
z2 )
}
, (1.51)
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where
1
T1

=
I(I + 1) b2

15
[3j(ω0) + 6j(2ω0)] . (1.52)

Similarly, for the transverse component, we have

d(M+11 +M+12)
dt

= −M+11 +M+12

T2
, (1.53)

where
1
T2

= I(I + 1) b2
[

3
10
j(0) +

1
2
j(ω0) +

3
15
j(2ω0)

]
. (1.54)

Finally, note that in the Motional Narrowing Regime we obtain

1
T1
≈ 1
T2
≈ I(I + 1) b2 2 τc. (1.55)

1.12.2.2 Nuclei with Different Resonance Frequencies

When there is a magnetic dipolar coupling between two nuclei having different resonance frequencies,

for example, a nucleus of spin I and a nucleus of spin S, the longitudinal recovery of the magnetization

for I and S nuclei follows the coupled differential equations, also known as the Solomon equations:

dMzI

dt
= − 1

T II1

(MzI −Meq
zI )− 1

T IS1

(MzS −Meq
zS ),

dMzS

dt
= − 1

TSI1

(MzI −Meq
zI )− 1

TSS1

(MzS −Meq
zS ),

(1.56)

where
1
T II1

=
S(S + 1) b2

15
[j(ωI − ωS) + 3j(ωI) + 6j(ωI + ωS)] , (1.57)

and
1
T IS1

=
I(I + 1) b2

15
[j(ωI − ωS)− 6j(ωI + ωS)] . (1.58)

Expressions for TSS1 and TSI1 can be obtained from the expressions above by interchanging the indices

I and S. The times TSS1 and T II1 are called auto-relaxation times, and T IS1 and TSI1 are called cross-

relaxation times.

Similarly, for the MI transverse component one finds

dM+1I

dt
= −M+1I

T2
, (1.59)

where

1
T I2

= S(S + 1) b2
[

2
15
j(0) +

3
15
j(ωS) +

1
10
j(ωI) +

3
15
j(ωI + ωS) +

1
30
j(ωI − ωS)

]
. (1.60)
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In the Motional Narrowing Regime If we assume the spectral density function arises from a simple

model of isotropic molecular tumbling, having a single reorientational correlation time τc, then one can

show that (
1
T II1

)/(
1
T IS1

)
≈ 2S(S + 1)

I(I + 1)
. (1.61)

Thus, we define

mzI =
MzI

I(I + 1)
, and mzS =

MzS

S(S + 1)
, (1.62)

and obtain
dmzI

dt
≈ − 1

T II1

[
(mzI −meq

zI )−
1
2

(mzS −meq
zS )
]
, (1.63)

dmzS

dt
≈ − 1

TSS1

[
(mzI −meq

zI )−
1
2

(mzS −meq
zS )
]
. (1.64)

We still have two coupled differential equations but now the the cross-relaxation times are no longer

important and only the two auto-relaxation times are needed to describe the motional narrowing limit.

1.12.2.3 Steady-State Overhauser Effect

If the S nucleus is continuously irradiated, i.e., decoupled, while the I spin is detected then

dMzI

dt
= − 1

T II1

(MzI −Meq
zI )− 1

T IS1

(−Meq
zS ) (1.65)

Under these conditions MIz(t) eventually will reach a steady state value of Mss
Iz when

dMIz

dt
= 0. This

leads to

Mss
zI = Meq

Iz +
T II1

T IS1

Meq
zS . (1.66)

Rearranging this expression and substituting back into the previous expression we obtain

dMzI

dt
= − 1

T II1

(MzI −Mss
zI ). (1.67)

These last two equations indicate that under continuous irradiation of the S spins, the I magnetization

will adjust to a steady state value with a single exponential relaxation time. The enhancement ratio of

the steady-state to equilibrium magnetization is given by

εNOE =
Mss
zI

Meq
zI

= 1 + ηIS , (1.68)

where ηIS , given by

ηIS =
γS
γI

[
6j(ωS + ωI)− j(ωS − ωI)

j(ωS + ωI) + 3j(ωI) + 6j(ωS + ωI)

]
, (1.69)
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is called the steady-state nuclear Overhauser enhancement.

In the motional narrowing regime (small τc) the enhancement ratio becomes

εNOE ≈ 1 +
γS
2γI

, (1.70)

whereas in the slow motion regime (ω0τc > 1) we find

εNOE ≈
(γ2
I − γ2

S)(3γ2
I + 5γIγS − 10γ2

S)
3γ4
I + γ2

Iγ
2
S − 10γIγ3

S + 10γ4
S

. (1.71)

1.12.3 Quadrupolar Relaxation

In the special case of I = 1 a single exponential recovery with time constant T1 arises from fluctuations

of quadrupolar coupling is given by

1
T1

=
3
80

(
1 +

η2
q

3

)(
e2qQ

~

)2

[j(ω0) + 4 j(2ω0)], (1.72)

and
1
T2

=
1

160

(
1 +

η2
q

3

)(
e2qQ

~

)2

[9 j(0) + 15 j(ω0) + 6 j(2ω0)]. (1.73)

Here e2qQ/h is the quadrupole coupling constant and ηq is the asymmetry parameter for the quadrupole

coupling.

For nuclei with spin I > 1, there will generally be a multi-exponential recovery, and the assumption

of a single exponential recovery with time constant T1 is not valid. In the extreme narrowing case and

with the assumption of isotropic molecular tumbling, we obtain a single exponential recovery time for

arbitrary spin I, which is given by

1
T1

=
1
T2

=
3
40

2I + 3
I2(2I − 1)

(
1 +

η2
q

3

)(
e2qQ

~

)2

τc, (1.74)

where τc is the molecular reorientation correlation time.

1.12.4 Nuclear Shielding Anisotropy Relaxation

When the electron density around a nucleus is not spherically symmetric the nuclear shielding is a tensor

quantity which depends on the orientation local electron density with respect to the external magnetic

field. In such a situation the nuclear shielding requires two additional parameters, σ|| and σ⊥ to describe

the full tensor. Fluctuations in the nuclear shielding interaction will cause relaxation, described in terms

of a single T1 and T2 according to

1
T1

= γB0

(
σ|| − σ⊥

) 1
15
j(ω0), (1.75)
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and
1
T2

= γB0

(
σ|| − σ⊥

) [ 2
45
j(0) +

1
30
j(ω0)

]
. (1.76)

In the extreme narrowing case and with the assumption of isotropic molecular tumbling we obtain

1
T1

=
2
15
γ2B2

0

(
σ|| − σ⊥

)2
τc, (1.77)

and
1
T2

=
7
45
γ2B2

0

(
σ|| − σ⊥

)2
τc. (1.78)

P. J. Grandinetti, November 23, 2009



1.13. MEASURING CHEMICAL EXCHANGE - THE MODIFIED BLOCH EQUATIONS 59

1.13 Measuring Chemical Exchange - The Modified Bloch

Equations

During a chemical reaction, nuclei can move between chemically nonequivalent environments. Depending

on the reaction rate, these processes will manifest themselves differently in the NMR lineshape [1]. In

this section, we will examine the simplest example, a single spin 1/2 nucleus experiencing no other spin

couplings, and undergoing chemical exchange between two chemically nonequivalent sites, that is,

A

k1




k−1

B.

In this situation we write the two coupled Bloch equations

dMA

dt
= γ(1− σA)MA(t)×B(t)− [R]{MA(t)−MA,eq} − k1MA(t) + k−1MB(t),

dMB

dt
= γ(1− σB)MB(t)×B(t)− [R]{MB(t)−MB,eq}+ k1MA(t)− k−1MB(t).

We will further simplify our treatment by neglecting the effects of spin relaxation, assuming equal

populations of A and B, and that k = k1 = k−1. Solving this set of linear, first-order differential

equations, one obtains

S(ω) =
k(ΩA − ΩB)2

(ω − ΩA)2(ω − ΩB)2 + 4k2∆ω2
, (1.79)

where ∆ω = ω − (ΩB + ΩA)/2, as analytical expression for the absorption mode spectrum. In Fig. 1.2

are simulations of the predicted NMR lineshape in a simple two site exchange, based on Eq. (1.79). In

the slow exchange limit (low k), the individual resonances for each site are resolved with linewidths, if we

include spin-spin relaxation, of 1/T2 + k. As the rate of exchange increases the individual lines broaden

and coalesce together. In the fast exchange limit the two lines collapse into a single line appearing at the

average frequency of the two sites and has a linewidth of 1/T2 + 1
2∆ω2/k2. The decrease in sensitivity in

the intermediate regime is more apparent in the spectra on the right of Fig. 1.2, where the lineshapes are

normalized to have the same area, a situation that more accurately reflects the experimental sensitivity

variations

Given that rate constants often follow the Arrhenius equation

k = A exp(−Ea/RT ), (1.80)
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k=2
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k=10000
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Figure 1.2: NMR lineshape for a two site system (ΩA = −ΩB = 200 Hz) undergoing chemical exchange

as a function of rate constant k in s−1. The intensity of the spectra on the left are scaled to the same

amplitude to more clearly illustrate the lineshape transformation. The decrease in sensitivity in the

intermediate regime is more apparent in the spectra on the right where the lineshapes are normalized to

have the same area; a situation that more accurately reflects the experimental sensitivity variations.
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then the evolution of lineshapes with increasing temperature would parallel those in Fig. 1.2 with in-

creasing k. A full lineshape analysis as a function of temperature provides a simple way to measure the

activation energy, Ea, for the exchange process.
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1.14 Multi-Dimensional NMR

Multi-dimensional NMR originated with Jean Jeener back in the early 1970’s and was developed by many

others over the last few decades, including Richard Ernst who received the Nobel Prize in Chemistry in

1991.

In two dimensional NMR experiments we define two time domains t1 and t2, that are usually divided

by some perturbation (typically an rf pulse), and increment both times independent of each other. Now

depending on the perturbations you apply and the particulars of the spin system you’re exciting, some

spins that have one particular frequency during t1 will have a different frequency during t2. A 2D

spectrum provides us with a map of the correlations between the spin’s frequencies in the different time

domains.

F
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1
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Let’s look at a couple examples where such correlations can be exploited to obtain information unavailable

in a one-dimensional NMR experiment.
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1.14.1 2D Exchange and 2D NOESY NMR

We saw in section 1.13 how the NMR resonances of two nuclei undergoing chemical exchange will broaden

and then coalesce into a single resonance as the rate of exchange increases. The two-dimensional exchange

experiment is used to follow chemical exchange processes that occur on a much slower time scale, where

the exchange rate has little effect on the lineshapes. The sequence and coherence transfer pathway is

shown below.

(π/2)φ1
t1 tm

(π/2)φ2
t2

(π/2)φ3

0
+1

-1
p

Let’s consider this experiment with a system consisting of two chemically distinct but uncoupled spin

1/2 nuclei. We’ll label these two sites A and B. One can show that without exchange the signal for these

two sites in the experiment above is

S(t1, t2) = SA(0, 0)eiΩAt1eiΩAt2e−(t1+t2)/T
(A)
2 + SB(0, 0)eiΩBt1eiΩBt2e−(t1+t2)/T

(B)
2 .

If we did a double Fourier transform of this signal with respect to t1 and t2, that is,

S(ω1, ω2) =
∫ ∞

0

∫ ∞
0

S(t1, t2)eiω1t1eiω2t2 dt1 dt2,

we would get a two-dimensional spectrum that would look schematically like the one below.

ω1

ω2ΩAΩB

ΩA

ΩB

Projection onto ω2 axis 

Projection onto ω1 axis 
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Peaks for the two sites A and B will appear along the diagonal line ω1 = ω2 in the two-dimensional

spectrum. On the top and right side of the two-dimensional spectrum are the one-dimensional projections

(sums) of the two-dimensional spectrum onto each axis. This two-dimensional spectrum is a plot of how

these two one-dimensional spectra (projections) are correlated.

Let’s now consider again the two site exchange process where a nucleus is exchanging between sites

A and B. When this exchange process is occurring much slower that the individual T2 times for each

site then our two-dimensional spectrum will contain two additional peaks as shown below.

ω1

ω2ΩAΩB

ΩA

ΩB

Projection onto ω2 axis 

Projection onto ω1 axis 

These two new peaks are called cross-correlation peaks and appear on the off-diagonal. For example,

the signal at (ω1, ω2) = (ΩA,ΩB) corresponds to a nucleus that was in the A environment during t1 and

during tm exchanged over to the B environment.

Sites along the diagonal are called auto-correlation peaks and correspond to nuclei which were in

the same environment for both t1 and t2. Clearly when tm = 0 there should be no cross peaks and as

tm is increased, the cross peaks will grow in intensity at the expense of the diagonal peaks. Assuming

k1 = k−1 = k and that the sites A and B are equally populated the intensities of the auto-correlation

and cross-correlation peaks as a function of mixing time, tm, are given by

aAA = aBB =
1
2

[1 + exp(−2ktm)] exp(−tm/T1), (1.81)

aAB = aBA =
1
2

[1− exp(−2ktm)] exp(−tm/T1), (1.82)
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respectively. From this result one finds that the exchange rate constant can be extracted from the ratio

of the cross peak to diagonal peak as a function of tm, that is,

IAA
IAB

=
aAA
aAB

≈ 1− ktm
ktm

.

Below are plots showing typical variations of the auto- and cross-peak intensities as a function of mixing

time, when T1 = 100 milliseconds and k = 30 sec−1.
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As mentioned in section 1.13, by measuring rate constants, k, as a function of temperature one can

obtain the activation energy for the exchange process.

1.14.1.1 Transient nOe’s

Not only can chemical exchange generate cross-peak intensity, but relaxation mediated by dipolar cou-

pling between nuclei can also do the same. Recalling our expressions for auto- and cross-relaxation we

define auto and cross-relaxation rates for two nuclei of the same isotope (same gyromagnetic ratio and

angular momentum) but different resonance frequencies as

Rauto = 1/T 11
1 = 1/T 22

1 , (1.83)

and

Rcross = 1/T 12
1 = 1/T 21

1 , (1.84)

and rewrite the Solomon equations

dMz1

dt
= −Rauto(Mz1 −Meq

z1 )−Rcross(Mz2 −Meq
z2 ),

dMz2

dt
= −Rcross(Mz1 −Meq

z1 )−Rauto(Mz2 −Meq
z2 ).

(1.85)
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Solving these equations we find that there will be an exchange of longitudinal magnetization during the

mixing time according to

M1z
τm−→ cosh(Rcrossτm)e−RautoτmM1z + sinh(Rcrossτm)e−RautoτmM2z, (1.86)

M2z
τm−→ sinh(Rcrossτm)e−RautoτmM1z + cosh(Rcrossτm)e−RautoτmM2z. (1.87)

Thus, we see that cross-peak intensity will be generated by nuclei that cross relax each other. From

these equations we can obtain expressions for the auto- and cross-peak amplitudes,

aauto(τm) = cosh(Rcrossτm)e−Rautoτm , (1.88)

across(τm) = sinh(Rcrossτm)e−Rautoτm . (1.89)

At short mixing times these amplitudes can be approximated as

aauto(τm) ≈ 1, (1.90)

across(τm) ≈ Rcrossτm. (1.91)

Recalling our earlier expression for the cross-relaxation rate

Rcross =
1
T IS1

=
I(I + 1)

15

(
µ0~γIγS

4πr3

)2

[j(ωI − ωS)− 6j(ωI + ωS)] , (1.92)

we find for the cross-peak amplitude in the motional narrowing limit that

across(τm) ∼ 1
r6
. (1.93)
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1.15 Magnetic Resonance Imaging

Nuclear magnetic resonance can also be used as a tool for imaging samples. By applying a linear magnetic

field gradient across the sample,

B(r) = B0 + G · r,

and neglecting relaxation we write the signal in the rotating frame, integrated over the sample volume

as

S(t) =
∫ ∫ ∫

ρ(r)eiγG·rtdr, (1.94)

where dr implies integration over the volume of the sample. We could identify this as the time domain

signal after applying a π/2 pulse. On the other hand, if we define the reciprocal space vector k with

k = γGt/2π, (1.95)

we can describe this signal as the nuclear spin density in reciprocal space,

S(k) =
∫ ∫ ∫

ρ(r)ei2πk·rdr, (1.96)

Written in this form, the volume integral the signal is recognized as a three-dimensional Fourier trans-

form of the magnetization density in real space. Thus, if we apply a three dimensional inverse Fourier

transform to S(k) we obtain the three dimensional real space image of the sample, that is,

ρ(r) =
∫ ∫ ∫

S(k)e−i2πk·rdk. (1.97)

There are numerous approaches for doing magnetic resonance imaging. For additional details, the reader

is directed to the text by Callaghan listed at the end of the chapter. To illustrate one approach consider

the sequence below.

(π/2)x

time

r.f.

Gz

Gx

Gy

τZ τY t
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In this experiment a single π/2 creates transverse magnetization. Three magnetic field gradients are

then applied sequentially along three orthogonal directions. The objective in this experiment is to

independently and linearly increase the value of k in all three directions, so that a Fourier transform

with respect to all three reciprocal space dimensions leads to a three dimensional real space spin density

plot, according to

ρ(x, y, z) =
∫ ∫ ∫

S(kx, ky, kz)e−i2π(kxx+kyy+kzz)dkxdkydkz (1.98)

From Eq. (1.95) we see that we can vary the size of k through either the size or the duration of the

applied field gradient. In the sequence above one increases kz and ky by increasing the gradient strengths

Gz and Gy with constant durations τz and τy. Increases in kx are obtained by acquiring the signal as

a function of time with a fixed gradient strength Gx. The medical applications, alone, of magnetic

resonance imaging are staggering, and form the basis of a profitable industry. Below is an example of a

two-dimensional MRI scan of a human head.
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1.16 Summary

Starting with a classical picture of a magnetic top precessing about an external magnetic field, we saw

how the precession frequency of that magnetic top could be measured by placing a coil around it, and

then measuring the oscillating EMF generated in the coil due to Faraday’s Law. We can think of NMR

active nuclei as tiny magnetic tops all precessing about the magnetic field with a random distribution

of precession phases. The distribution of procession cones, however, was not completely random, and a

small excess (ppb) of nuclei were precessing on the +z half of the sphere. Thus, there was a non-zero

vector sum of all the nuclear spin magnetic moments along the z-axis.

Using magnetic resonance, we could rotate this net magnetization vector from the z-axis into the

x-y plane, and then detect its precession frequency. In the lab frame, the Bloch equations describe the

motion of this magnetization vector (including relaxation effects).

dM
dt

= ω(t)×M(t)− [R]{M(t)−Meq}

In the rotating frame, the motion of the magnetization vector becomes simpler (particular during a

magnetic resonance rf pulse).

d∗M
dt

= ωeff(t)×M− [R]{M−Meq}

By going into the rotating frame, the precession effects of the large external field can be eliminated, and

the small oscillatory fields in the lab frame can appear as small static fields in the rotating frame.

There is a Fourier transform relationship between the signal detected after application of a π/2 pulse

and the NMR spectrum.

For an ensemble of isolated spin 1/2 nuclei we have seen in this chapter that the Bloch equations

do a wonderful job of quantitatively describing the NMR experiment. For nuclei with spin greater than

1/2, or for coupled nuclei, however, the Bloch Equations are no longer adequate. The reason for this is

that nuclei with I > 1/2 have greater degrees of freedom than that of single magnetic dipole moment. It

is possible to modify the Bloch Equations to describe additional degrees of freedom, but this motion is

just as easily described using the well-established machinery of quantum mechanics. In later chapters,

we will look in detail at how quantum mechanics describe the NMR experiment.

Finally, the lineshape of a nucleus undergoing chemical exchange will be affected, in a predictable

manner, by the hopping of the atom between two chemically nonequivalent sites. Analysis of this

lineshape yields the rate constant for the exchange process.
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